
GTA V SELF DRIVING CAR WITH MOTION
EVAN MILLER

STUDENT | REDEI LABS | CENTRAL MICHIGAN UNIVERSITY

INTRODUCTION
In this project, we set out to create an autonomous
driver for the game Grand Theft Auto V. This will
be accomplished by training a Neural Network
on a set of images taken from actual players driv-
ing in the game. As a secondary goal, we aim to
integrate the game’s telemetry data tracking into
a program that controls a motion simulator in our
lab.
This project is an attempt to improve upon the
methods used in Aiden Yerga Gutierrez and Iker
Garcia’s project GTAV-Self-driving-car. In their
documentation, they noticed that their network
was driving by focusing on the path highlighted
on the GPS while ignoring the actual environ-
ment. With this in mind, we have 3 goals for the
AI portion of this project

1. Remove UI components that allow the
model to "cheat" as it learns

2. Encourage the model to react to objects like
cars and pedestrians by highlighting them
in the dataset

3. Rewrite training functionality using Gener-
ators to allow for easier modification and
ease of updates to modern versions of Ten-
sorflow

MOTION SIMULATION
We used our labs custom Motion Simulator,
which has been in development since 2017, for
this project. The cockpit came from Tennessee, the
motors came from Florida, and the inverters came
from Utah. We have two primary electric motors
which are geared to deliver approximately 2000
ft-lbs of torque in an instant, which is roughly the
equivalent of two semi trucks chained together.
The simulator can be seen in the video in the Re-
sults section.
We wrote a custom plugin using OpenIV to con-
nect our simulator to GTA V. Fortunately, the
game keeps track of the telemetry data for a ve-
hicle the player is in, so these values can be moni-
tored and passes to an interpreter for the motions
of our machine.

RESULTS
Both the separate image and image highlighting
methods achieved reasonable accuracies on our
dataset, and performed similarly when tested in
the game. The motion simulation plugin works as
intended, the training process has been simplified
using a generator, and the AI demonstrated be-
havior that showed it was recognizing both back-
ground environments and vehicles. However, it
had many shortcomings.
Our model learns entirely based on imitation, so it
oversimplifies certain necessary tasks. One exam-
ple of this was observed when the AI approached
a turn during training. It began to slow down
to take the turn, but it was slowing down too
quickly. Since it was still recognizing an envi-
ronment where it should be holding the S key, it
slowed all the way to a stop and began to go back-
wards. After backing up for a few seconds, the
model again recognized an area where it should
go forwards and began to repeat this cycle.
To address the issue with recognizing distance in
our images, one could use a heatmap correspond-
ing to the distance to objects in each image. Many
algorithms to do this exist, and they could easily
be implemented during the preprocessing phase
of our training generator.

DATASET
Our datset is comprised of screenshots taken
while actual players drove around our training
route. These screenshots are grouped into se-
quences of 5 and saved as 3 channel Numpy ar-
rays, which are then paired with the combination
of buttons pressed on the last image. We choose
to analyse sequences of images because they en-
code information about momentum and direction
of movement for our model.

OBJECT DETECTION
We utilize two techniques to
highlight the objects in our
images. Both of these meth-
ods are based on utilizing
the YOLO object detection
algorithm pretrained to rec-
ognize objects that are com-
monly found on the road
such as cars, bicycles, and
people. This network was
trained by Lavanya Shukla
as part of the Lyft 3D Object Detection for Autonomous Driving challenge on Kaggle.
Our first method uses our object detection model to create bounding boxes for any objects found in our
image. The coordinates for these boxes are then used to create a mask that we apply to our images to
separate them into two: one that contains objects and one that contains the background. Each image
will be sent as an input to separate Neural Networks, which are later concatenated, so as to allow the
model to react to the environments and objects differently.
For our second method, we will draw our bounding boxes directly onto our images. While this requires
that both the objects and backgrounds are processed by the same network, it greatly reduces the com-
plexity of the inputs to our model, which theoretically makes it easier for our network to learn patterns.

NEURAL NETWORKS
The hyperparameters for both networks are adapted from
Aiden’s project, since we had little time to tune our model our-
selves. The training process was completed using a custom
Tensorflow data generator that reads data from our saved ar-
rays and preprocesses them by performing object detection be-
fore grouping them into arrays. This was done as the entire
dataset of images is too large to fit into working memory in
its entirety. We also chose to calculate training weights for our
classes using the formula num largest class

num class where num class is
a count of all instances of a specific key combination in our
dataset and num largest class is the maximum of num class
over each class. We used this method instead of balancing our
dataset because it is important that the long straightaways are
all recognized, and balancing the dataset significantly reduces
the model’s exposure to these areas.

